Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 11: e15330, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37187511

RESUMO

Zinc (Zn) is an important element in plants, but over-accumulation of Zn is harmful. It is well-known that brassinolide (BR) plays a key role in the regulation of abiotic stress responses in plants. However, the effects of brassinolide on alleviating Zn phytotoxicity in watermelon (Citrullus lanatus L.) seedlings are not clear. The purpose of this study was to study the effect of 24-epibrassinolide (EBR, one of the bioactive BRs) on Zn tolerance of watermelon seedlings and its potential resistance mechanism. Exposure to excessive Zn significantly inhibited shoot and root fresh weight of watermelon, but this could be significantly alleviated by the optimum 0.05 µM EBR. Exogenous spraying EBR increased the pigments and alleviated oxidative damage caused by Zn through reducing Zn accumulation and the levels of reactive oxygen species (ROS) and malonaldehyde (MDA) and increasing the activities of antioxidant enzymes and contents of ascorbic acid (AsA) and glutathione (GSH). Importantly, the relative mRNA levels of antioxidant genesincluding Cu/Zn-superoxidedismutase (Cu-Zn SOD), catalase (CAT), ascorbic acid peroxidase (APX), and glutathione reductase (GR) were significantly induced after EBR treatment. In addition, EBR pre-treatment induced lignin accumulation under Zn stress, and the activity of phenylalanine ammonia-lyase (PAL) and 4-coumaric ligase (4CL), two key enzymes regulating lignin synthesis, also tended to be consistent. Collectively, the present research proves the beneficial effects of EBR in response to Zn stress through enhancing antioxidant defense and lignin accumulation and provides a new insight into the mechanism of BR-enhancing heavy metal tolerance.


Assuntos
Antioxidantes , Citrullus , Antioxidantes/farmacologia , Plântula , Zinco/farmacologia , Lignina/farmacologia , Ácido Ascórbico/farmacologia , Glutationa/farmacologia
2.
Plant Signal Behav ; 18(1): 2186640, 2023 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-37083111

RESUMO

Zinc (Zn) is an important element in plants, but over-accumulation of Zn is harmful. The phytohormone brassinosteroids (BRs) play a key role in regulating plant growth, development, and response to stress. However, the role of BRs in watermelon (Citrullus lanatus L.) under Zn stress, one of the most important horticultural crops, remains largely unknown. In this study, we revealed that 24-epibrassinolide (EBR), a bioactive BR enhanced Zn tolerance in watermelon plants, which was related to the EBR-induced increase in the fresh weight, chlorophyll content, and net photosynthetic rate (Pn) and decrease in the content of hydrogen peroxide (H2O2), malondialdehyde (MDA), and Zn in watermelon leaves. Through RNA deep sequencing (RNA-seq), 350 different expressed genes (DEG) were found to be involved in the response to Zn stress after EBR treatment, including 175 up-regulated DEGs and 175 down-regulated DEGs. The up-regulated DEGs were significantly enriched in 'phenylpropanoid biosynthesis' pathway (map00940) using KEGG enrichment analysis. The gene expression levels of PAL, 4CL, CCR, and CCoAOMT, key genes involved in phenylpropanoid pathway, were significantly induced after EBR treatment. In addition, compared with Zn stress alone, EBR treatment significantly promoted the activities of PAL, 4CL, and POD by 30.90%, 20.69%, and 47.28%, respectively, and increased the content of total phenolic compounds, total flavonoids, and lignin by 23.02%, 40.37%, and 29.26%, respectively. The present research indicates that EBR plays an active role in strengthening Zn tolerance, thus providing new insights into the mechanism of BRs enhancing heavy metal tolerance.


Assuntos
Citrullus , Esteroides Heterocíclicos , Brassinosteroides/farmacologia , Zinco , Citrullus/genética , Citrullus/metabolismo , Peróxido de Hidrogênio/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Esteroides Heterocíclicos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...